

PUUPOHJAISTEN TEKSTIILIEN MARKKINA JA KEHITYSTYÖ

PÄÄTTÄJIEN 49. METSÄAKATEMIA Seminaaripäivä, keskiviikko 9.9.2020 Majvik, Kirkkonummi Pia Qvintus Spinnova

The Sustainable Fibre Company.

09/09/2020

Company Confidential

Pulp & Cellulosic Fibre Markets

185

million tons

p/a*

Total volume of pulp used for cellulosic textile fibre equals

only **3.6%**

of the total pulp volume produced.

 Packaging paper & board
 Printing & writing
 Tissue paper

Other paper & board

Global Cellulosic Textile

Fibre Volume

Sources: Confederation of European Paper Industries CEPI 2017, Textile Exchange 2018

* This basically equals the volume of dissolved pulp p/a, as that's the raw material of all man-made cellulosic fibres, not Spinnova.

Man made cellulosic fibres Case - viscose

Viscose production

- Production mainly (>80%) in Asia, China and India
- Biggest producer Austrian Lenzing

Viscose uses

- Apparel
- Home textiles
- Medical textiles
- Technical textiles

Challenge

 Use of highly toxic chemistry in production

Viscose replacements

- Lyocell
- Infinited Fiber Company
- Ioncell-F, Aalto University
- Ioncell, MI Demo Oy (Metsä Group/Itochu)

Our Story

It all started with spider web.

In 2009, Technical Research Centre of Finland's (VTT) pulp & paper scientist **Juha Salmela** heard a presentation from a spider researcher in Oxford university, explaining the similarities between a spider web's protein and nanocellulose.

That's when the idea came to Juha: what if wood fibre could be spun into textile fibre in the same way, without breaking the structure with chemicals?

What if we could imitate Mother Nature herself?

Spinnova The Sustainable Fibre Company. Heureka!

A Very Short History

Spinoff

from VTT

Idea What if we could mimic spider web?

Testing in VTT Technical Research Centre of Finland

Lab scale development Small industrial scale development

Big industrial scale pilot

Our Founders

Born in 1972, Janne Poranen is the CEO and co-founder of Spinnova.

Before spinning the business off from VTT with Salmela, he headed VTT's Fibers and Bio-based materials research area. He also held other managerial positions in his ten years with the VTT and was a visiting scientist at the University of Maine.

Poranen holds a PhD in physics, completed with business and innovation leadership training in the IMD Business School. He is a hybrid of scientist, industrial expert and entrepreneur.

CTO Juha Salmela

Born in 1973, Juha Salmela is the CTO and co-founder of Spinnova.

Prior to inventing the method for spinning fibre out of cellulose, physicist Salmela was a team leader of VTT's rheology and process flows team. His main focus was on experimental research of paper making related fibre suspension flows and rheology.

Salmela has led several large industrial process development projects in his 18 years with the VTT. He was also a visiting scientist at the university of British Columbia in Vancouver. He is a member of the Pulp and Paper Fundamental Research Committee.

Salmela was chosen European CTO of the Year 2018 by Spinverse and EIRMA.

The Method

Disruptive technology for drop-in fibre

Disruptively sustainable technology

Wood / Waste

Micro Fibrillated

Cellulose

Pulping

Fibril Suspension

6

Extrusion & Drying

Non-wovens

Apparel & Footwear

Home Textiles

Key Differentiators

Spinnova

0

Mechanical treatment Grinding wood fibres into tiny micro fibrils.

- Grinding pulp mechanically
- Micro fibrillated cellulose
- Dry spinning and drying
- No washes / rinses
- No side / waste streams

Man-made Cellulosics

Dissolving Chemically breaking wood fibres into cellulose polymers.

- Chemically dissolving wood fibres into a polymer solution
- Wet spinning with chemicals
- Several wash and rinse cycles
 Side and waste streams*

* Lyocell uses a complex chemical process, however in a closed cycle, so it's more sustainable than a viscose process.

Patents and IPR

Spinnova's proprietary method, technology and trademark are very well protected around the world.

18 Patents granted 37

Patents pending

 (\mathbf{R})

Name and logo trademark registered

Circular Collection of Tomorrow

A maverick experiment

- 100% circular, subscription-based textile concept
- Involves consumers in R&D from 1st prototype phase
- Customer gets co-ownership of the circulating material
- Developing collection will provide the next product, only charging for cutting and sewing

1st Product: A recyclable backpack

- No metal. No plastic. No zippers. No dye. No PU coating.
- Only natural materials; quickly biodegradable at end-of-life
- Recyclable in Spinnova's process without dismantling
- Completely unique concept that can revolutionize sports and outdoor textiles

Waste Circularity Potential

Massive waste

problem!

Causes huge emissions!

Agri Waste

Agricultural waste such as straw is currently mostly burned, creating emissions – making that circular is underway

Pre-treatment process Undergoes pulping before mechanical refining

Making pre and post consumer cotton circular with eco-friendly technology would have massive environmental impacts

Cotton Upcycling

Pre-treatment process 100% cellulose; mechanical refining only Unlimited opportunities!

Other Cellulosic Waste

A number of waste streams such as biowaste from industrial processes are feasible for our technology

Pre-treatment process

Depends on the raw material's cellulosic content

The Fibre

Sustainable fibre with great properties

Fibre properties

- Mechanically closest to cotton
- Drop-in, customizable fibre
- Good thermal and acoustic insulation properties
- Water repellent/absorbing
- Resistant to solvents
- Electrically non-conductive
- Non-allergenic
- Can replace a number of fibres
- Suits a variety of applications

Sustainability Facts

- 100% Natural
- 100% Biodegradable
- 100% Circular
- 0% Microplastics
- 0% Harmful Chemicals
- 0% Volatile organic compounds (VOCs)
- 99% less water use than cotton
- Reusable post-consumer with improved quality
- Renewable raw material; certified wood / waste upcycling
- Low carbon footprint

AFTER (OZONE) (+ENZYME)

AFTER (ENZYME)

BEFORE WEFT: 75-25 (1yocell) WMRP: COTION

Thank you!

www.spinnova.com

